Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet.
نویسندگان
چکیده
AIM The aim of our work was to determine the influence of intestinal bacteria on the development of atherosclerotic lesions using apolipoprotein E (ApoE)-deficient knockout mice. METHODS The experiments were performed on ApoE-/--deficient mouse strain C57BL/6, bred under germ-free (GF) conditions for two generations or under conventional conditions with defined microflora (CV). The mice were fed a standard low cholesterol diet or cholesterol-rich diet for 3-4 months. We studied the development of advanced lesions in the thoracic and abdominal aorta by histological, morphometric and immunohistological methods. RESULTS Conventionally reared ApoE-/- mice (containing no pathogenic intestinal microbiota) and fed a standard low cholesterol diet in contrast to a high cholesterol diet did not develop atherosclerotic aortic plaques. In contrast, ApoE-/- mice reared under germfree conditions for 2 generations and fed a low cholesterol diet exhibited atherosclerotic plaques in the aorta. Characteristic lipid deposition with foam cells and macrophages was found in their arterial walls. CONCLUSION In contrast to the absence of atherosclerotic plaques in conventionally reared ApoE-deficient mice, germ-free ApoE-/- mice consuming the same low cholesterol standard diet developed atherosclerotic plaques in the aorta. Differences in atherosclerotic plaques between GF and CV ApoE-/- mice are not so apparent when mice are fed a high cholesterol diet. Our findings thus document the protective effect of microbiota (commensal bacteria) on atherosclerosis development.
منابع مشابه
Commensal bacteria at the crossroad between cholesterol homeostasis and chronic inflammation in atherosclerosis[S]
The gut microbiota were shown to play critical roles in the development of atherosclerosis, but the detailed mechanism is limited. The purpose of this study is to clarify the influence of gut microbiota on atherogenesis via lipid metabolism and systemic inflammation. Germ-free or conventionally raised (Conv) ApoE-deficient (ApoE-/-) mice were fed chow diet and euthanized at 20 weeks of age. We ...
متن کاملModulating the Gut Microbiota Improves Glucose Tolerance, Lipoprotein Profile and Atherosclerotic Plaque Development in ApoE-Deficient Mice
The importance of the gut microbiota (GM) in disease development has recently received increased attention, and numerous approaches have been made to better understand this important interplay. For example, metabolites derived from the GM have been shown to promote atherosclerosis, the underlying cause of cardiovascular disease (CVD), and to increase CVD risk factors. Popular interest in the ro...
متن کاملDiet-induced lipid accumulation in phospholipid transfer protein-deficient mice: its atherogenicity and potential mechanism.
A high saturated fat diet induces free cholesterol and phospholipid accumulation in the plasma of phospholipid transfer protein (Pltp)-deficient mice. In this study, we examined the atherogenic consequence of this phenomenon and investigated the possible mechanism(s). Pltp KO/Apoe KO mice that were fed a coconut oil-enriched high-fat diet (COD) for 7 weeks had higher plasma free cholesterol (14...
متن کاملOxidized cholesterol in the diet accelerates the development of atherosclerosis in LDL receptor- and apolipoprotein E-deficient mice.
The aim of the current study was to determine whether oxidized cholesterol in the diet accelerates atherosclerosis in low density lipoprotein receptor- (LDLR) and apolipoprotein E- (apo E) deficient mice. Mice were fed either a control diet or a diet containing oxidized cholesterol. For LDLR-deficient mice, the control diet consisted of regular mouse chow to which 1.0% cholesterol was added. Th...
متن کاملImpact of the Consumption of Tea Polyphenols on Early Atherosclerotic Lesion Formation and Intestinal Bifidobacteria in High-Fat-Fed ApoE−/− Mice
There is an increasing interest in the effect of dietary polyphenols on the intestinal microbiota and the possible associations between this effect and the development of some cardiovascular diseases, such as atherosclerosis (AS). However, limited information is available on how these polyphenols affect the gut microbiota and AS development. This study was designed to evaluate the modulation of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of atherosclerosis and thrombosis
دوره 17 8 شماره
صفحات -
تاریخ انتشار 2010